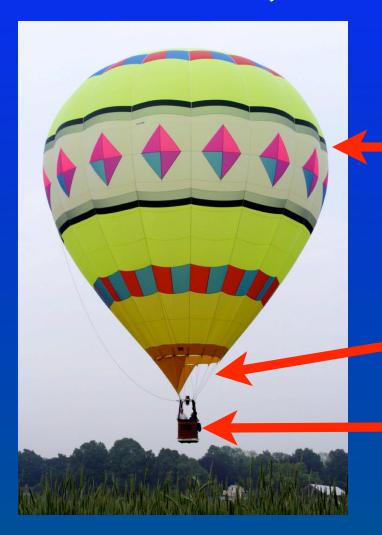
Building a Hot Air Balloon

Dan Nachbar

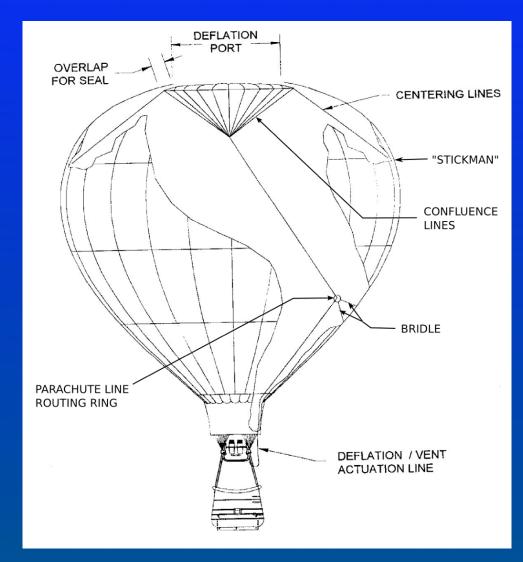

Why Build a Balloon Rather than an Airplane?

- Cheaper and less labor \$10,000 + 200 hours
- Flight testing is much less "interesting"
- Can be built in a 10' by 10' workspace
- Simpler inspection and maintenance
- Something different
- Room for experimentation -- mix and match

The Very Basics of Ballooning

- Internal air temp controls buoyancy
- Heat added with propane-fueled burner
- Heat lost through radiation/conduction or (for rapid descent or deflation) opening a vent

Two Major Components



Envelope -A Big Bag-o-Hot-Air

Suspension lines

Bottom-End -Everything Else

Parachute-style Vent

Two Regulatory Options

Ultralight - a.k.a "a hopper"

- Under 155 lbs empty weight
- Experimental/Amateur-built
 - Envelope usually treated as the "major portion" (a.k.a. 51%) of the aircraft

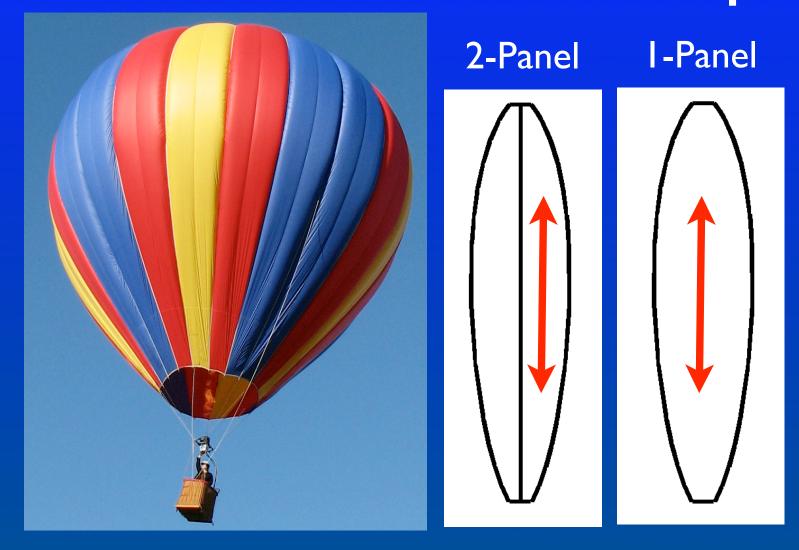
Forum Tomorrow

Getting Your Balloon Rating Bill Hughes 10:00 AM 002 GAMA Forum

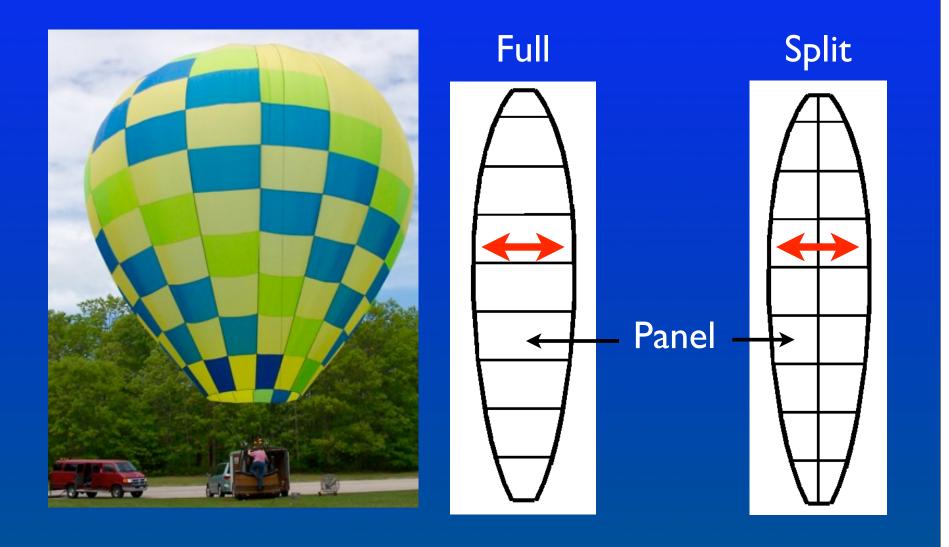
A Typical First Project • Build an envelope • Buy a bottom-end Lots of used bottom-ends are available because they last much longer than envelopes Almost nobody builds their own burners or tanks

Envelope Basics

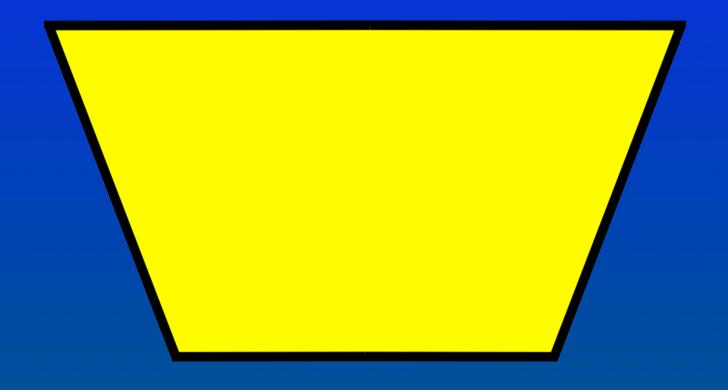
Envelope material is nylon
Nylon melts at 400+ F
Operated below 250 F
Few minutes at 275 F


Envelope Fabric • Rip-stop weave of nylon material Sometimes coated with either Silicone and/or Urethane Different weights • Stated in ounces per sq yard Be careful, almost nothing is standardized when it comes to fabric!

Fabric Strength • Two measures of strength • Pull (a.k.a. tensile) strength 50 to 100 lbs per linear inch Tear strength Slit test - 5 to 15 lbs • Pull strength used as a proxy for tear strength after construction

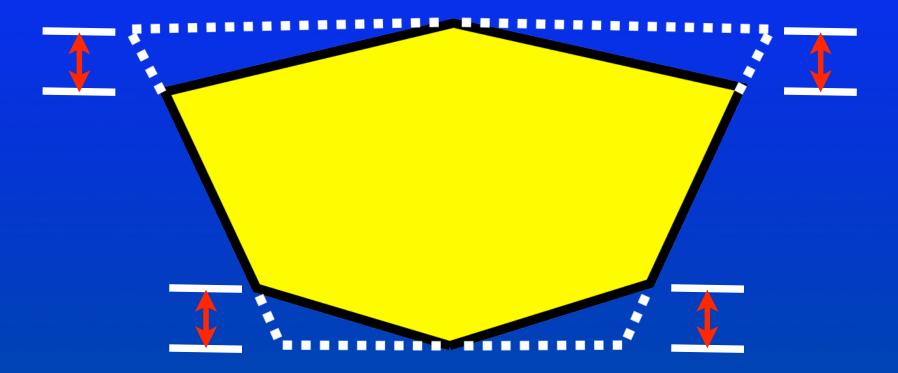

Envelope Webbing Also made of nylon • Often called "tapes" • Typically only 3/4" to 1" wide • Amazingly strong -- e.g. 1,000 lb test • Carry entire weight of bottom end • MIL-SPEC available !!!

Envelope Shape • Barrel-shaped tube • Opening at the top -- "top port" • Covered with a "parachute" vent • Used to deflate at end of flight • Opening at the bottom -- "mouth" • "Staves" of the "barrel" called "gores" • Gores made up of "panels"

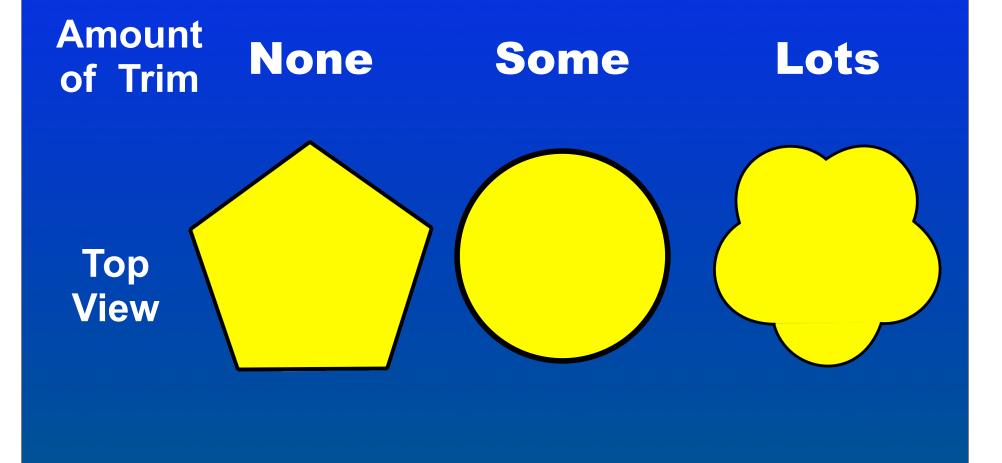

Vertical Panel Envelope

Horizontal Panel Envelope

Horizontal Full Panel Trapazoid Shape No Curves Necessary!



Basic Trapazoid Shape

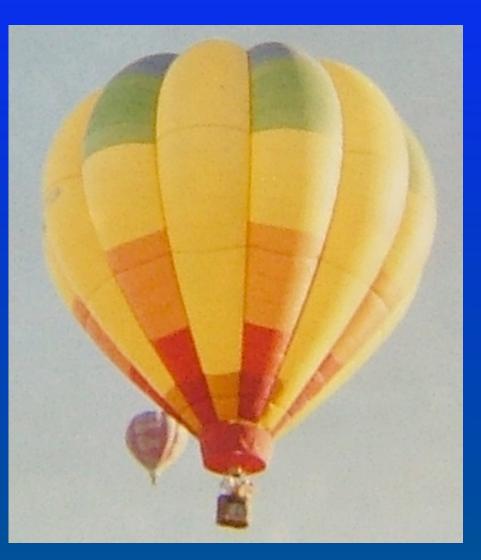


Trapazoid Trimming

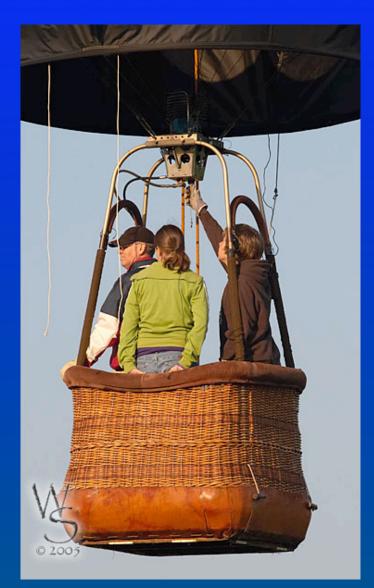
Red arrows show amount "trimmed" Not to Scale - Trim greatly exaggerated. Actual amount about 2% of panel height.

Effect of Trimming on a 5 Gore Balloon

No Trimming of Horizontal Panels



Some Trimming of Horizontal Panels


"Pumpkin" Balloon

Extensive Trimming of Horizontal Panels

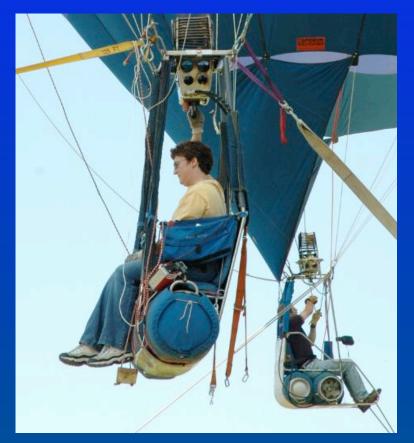
Panels Orientation Pros and Cons Horizontal No curved edges - trapazoidal • Less fabric waste - e.g. 5% vs 25% Shorter cutting table Vertical Slightly less sewing - e.g. 10%

Classic Rattan Baskets

Cloth-Sided Basket

"Trash Can" Basket

Non-basket Designs Hopper-style



A "Sporting" Landing

QuickTime™ and a decompressor are needed to see this picture.

Non-basket Designs "Chariot"-style

Non-basket Designs Forden Sled

Basic Design Issues

Decide on a bottom-end style

- Aesthetics/Taste
- Availability
- Cost
- Selection of heating components
 - Burner
 - Tanks steel vs aluminum vs composite
- Type and weight of envelope fabric

Basic Envelope Sizing

- A bit less than 20 lbs of lift per 1,000 cubic feet
 - In other words, a bit more than 50 (55 to 60) cubic feet needed for each lb
- Lift determined by max operating temperature
 - Higher temps reduce fabric longevity
 - 250 F typical max
 - Some pilots prefer to keep temps below 200 F to extend fabric life

Sample Weight Budget

ltem	Lbs Each	Qty	Subtotal
Envelope	100		100
Basket	100		100
Burners	2	25	50
Tanks	25	2	50
Hoses	2	5	10
Fuel	4.2	40	84
Misc	50		50
Subtotal			444

Gross Lift of a 54K envelope = 54,000/55 = 982 lbs 982 - 444 = 538 lbs available for humans

Going from an Envelope Size to an Envelope Pattern

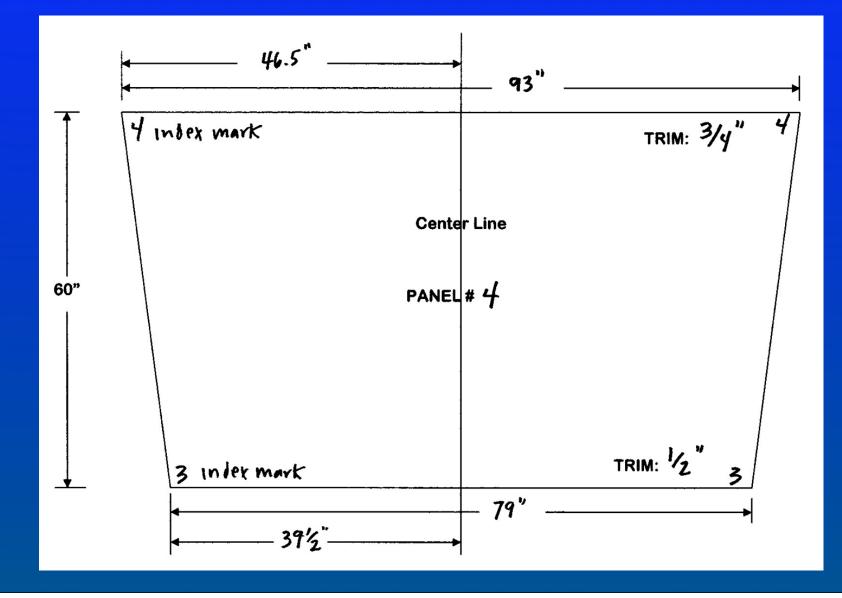
Use the Smalley spreadsheet

Calculates the curve along the edge of gore

Lots of secondary calculations required

• Use a pre-made set of plans

Purchase from a vendor


• Convince an experienced designer to help

Open Content plans from XLTA.ORG

XLTA.ORG Open Content Balloon Plans

- Started via a grant from the Wolf Aviation Trust
- Classic 54,000 cubic foot horizontal full gore
- I6 gores with I3 panels per gore
- Parachute vent in top opening
- "Soup to nuts" -- drawings, parts lists, detailed instructions, rigging line lengths, ...

XLTA.ORG Example Panel

Industrial Fabric Bonding/Sewing

- The Good News
 - Well developed technology
 - Very forgiving of imprecision
 - Easy to inspect
- The Bad News
 - Not for the easily overwhelmed
 - Fabric changes size (temp and humidity)
 - Comedy magnet

Tools !!!

- Industrial sewing machine
 - Lockstitch, double-needle, needle-feed
 - 3/8" gauge (spacing between needles)
- Cutting table -- at least 5' by 10'
- Hand tools
 - Specialized -- seam rippers, needle threaders
 - Standard -- Scissors, needle-nose pliers, forceps, markers, wallpaper razors, etc

Typical Envelope Build

20 hours - Cutting the fabric 60 hours - Sewing panels into gores 35 hours - Attaching gores together (There is a trick to sewing the last vertical seam!) 15 hours - Sewing parachute 10 hours - Horizontal tapes 10 hours - Net of webbing at the top 10 hours - Finish and hem top and bottom edges 40 hours - misc

Around 200 hours total build time

Making Life Easier

- When in doubt, use lots of pins !!!
- Listen to books on tape
- Do NOT build a model first !
- To develop your technique, start by sewing the bottom panels first
- Get a friend to help with the cutting
- Cut on a table rather than the floor

Making Life Easier (continued)

Don't reinvent the wheel

- Use a set of plans as a guide.
- Find someone experienced to kibitz
 - Balloon repair shop
 - Experienced builder
- Have a pro make/inspect burners, hoses, and steel suspension wires

Misc Post-Build Tasks

- Build or buy bottom end
- Instruments and gauges Altimeter, VSI, and temp
- Inflation fan
- Trailer
 - Optional for a hopper
 - Not so optional for larger balloon
- Get airworthiness certificate
 - More or less same process as for an airplane

Safety Tips

• Hire a pro to fabricate and/or inspect

- burners, hoses, and tanks
- steel suspension wires
- If you design your own envelope, use a safety factor of 10 for all fabric and webbing
- Run load tapes all the way to the crown ring

What to Do for an Encore

Build a bottom end
Artistic envelope designs

Color and pattern
Non-standard (a.k.a. "special") shapes

Envelopes with "Art Cuts"

Special Shapes

Special Shapes - "Tet"

Special Shapes - "Tet"

Special Shapes Continued

Current Developments at XLTA.ORG

Plans for low-cost hopper bottom end
Plans for envelopes of different sizes

Hopper envelope design

Slides from this talk also available

Resources

- Balloon-makers email list
- Balloon Builder's Journal (BBJ)
- XLTA.ORG
 - comprehensive links page
 - online plans
 - "Building a Balloon in Under a Month" Blog
- People

The Best Resource

Dan Nachbar

